Abstract
One of the major reasons that limit the practical applications of a brain-computer interface (BCI) is its long calibration time. In this paper, we propose a novel approach to reducing the calibration time of motor imagery (MI)-based BCIs without sacrificing classification accuracy. The approach aims to augment the training set size of a new subject by generating artificial electroencephalogram (EEG) data from a few training trials initially available. The artificial EEG data are obtained by first performing empirical mode decomposition (EMD) and then mixing resulting intrinsic mode functions (IMFs). The original training trials are aligned to common reference point with Euclidean alignment (EA) method prior to EMD and pooled together with artificial trials as the expended training set, which is input into a linear discriminant analysis (LDA) classifier or a logistic regression (LR) classifier. The performance of the proposed algorithm is evaluated on two motor imagery (MI) data sets and compared with that of the algorithm trained with only real EEG data (Baseline) and the algorithm trained with expanded EEG data by EMD without data alignment. The experimental results showed that the proposed algorithm can significantly reduce the amount of training data needed to achieve a given performance level and thus is expected to facilitate the real-world applications of MI-based BCIs.
Funder
National Natural Science Foundation of China
Publisher
Public Library of Science (PLoS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献