A feature selection-based framework to identify biomarkers for cancer diagnosis: A focus on lung adenocarcinoma

Author:

Abdelwahab OmarORCID,Awad Nourelislam,Elserafy Menattallah,Badr EmanORCID

Abstract

Lung cancer (LC) represents most of the cancer incidences in the world. There are many types of LC, but Lung Adenocarcinoma (LUAD) is the most common type. Although RNA-seq and microarray data provide a vast amount of gene expression data, most of the genes are insignificant to clinical diagnosis. Feature selection (FS) techniques overcome the high dimensionality and sparsity issues of the large-scale data. We propose a framework that applies an ensemble of feature selection techniques to identify genes highly correlated to LUAD. Utilizing LUAD RNA-seq data from the Cancer Genome Atlas (TCGA), we employed mutual information (MI) and recursive feature elimination (RFE) feature selection techniques along with support vector machine (SVM) classification model. We have also utilized Random Forest (RF) as an embedded FS technique. The results were integrated and candidate biomarker genes across all techniques were identified. The proposed framework has identified 12 potential biomarkers that are highly correlated with different LC types, especially LUAD. A predictive model has been trained utilizing the identified biomarker expression profiling and performance of 97.99% was achieved. In addition, upon performing differential gene expression analysis, we could find that all 12 genes were significantly differentially expressed between normal and LUAD tissues, and strongly correlated with LUAD according to previous reports. We here propose that using multiple feature selection methods effectively reduces the number of identified biomarkers and directly affects their biological relevance.

Funder

International Centre for Genetic Engineering and Biotechnology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3