Microblog-HAN: A micro-blog rumor detection model based on heterogeneous graph attention network

Author:

Bi Bei,Wang Yaojun,Zhang Haicang,Gao YangORCID

Abstract

Although social media has highly facilitated people’s daily communication and dissemination of information, it has unfortunately been an ideal hotbed for the breeding and dissemination of Internet rumors. Therefore, automatically monitoring rumor dissemination in the early stage is of great practical significance. However, the existing detection methods fail to take full advantage of the semantics of the microblog information propagation graph. To address this shortcoming, this study models the information transmission network of a microblog as a heterogeneous graph with a variety of semantic information and then constructs a Microblog-HAN, which is a graph-based rumor detection model, to capture and aggregate the semantic information using attention layers. Specifically, after the initial textual and visual features of posts are extracted, the node-level attention mechanism combines neighbors of the microblog nodes to generate three groups of node embeddings with specific semantics. Moreover, semantic-level attention fuses different semantics to obtain the final node embedding of the microblog, which is then used as a classifier’s input. Finally, the classification results of whether the microblog is a rumor or not are obtained. The experimental results on two real-world microblog rumor datasets, Weibo2016 and Weibo2021, demonstrate that the proposed Microblog-HAN can detect microblog rumors with an accuracy of over 92%, demonstrating its superiority over the most existing methods in identifying rumors from the view of the whole information transmission graph.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Rumor Detection over Varying Time Windows[J].;S Kwon;PLOS ONE,2017

2. Automatic detection of rumor on Sina Weibo[C];F Yang;Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics,2012

3. Detecting rumors from microblogs with recurrent neural networks[C];J Ma;Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,2016

4. A Convolutional Approach for Misinformation Identification[C].;F Yu;Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017

5. A Novel Computational Model for Predicting microRNA–Disease Associations Based on Heterogeneous Graph Convolutional Networks[J].;C Li;Cells,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3