Abstract
The susceptibility of Asian tiger mosquitoes to DENV-2 in different seasons was observed in simulated field environments as a reference to design dengue fever control strategies in Guangzhou. The life table experiments of mosquitoes in four seasons were carried out in the field. The susceptibility of Ae. albopictus to dengue virus was observed in both environments in Guangzhou in summer and winter. Ae. albopictus was infected with dengue virus by oral feeding. On day 7 and 14 after infection, the viral load in the head, ovary, and midgut of the mosquito was detected using real-time fluorescent quantitative PCR. Immune-associated gene expression in infected mosquitoes was performed using quantitative real-time reverse transcriptase PCR. The hatching rate and pupation rate of Ae. albopictus larvae in different seasons differed significantly. The winter hatching rate of larvae was lower than that in summer, and the incubation time was longer than in summer. In the winter field environment, Ae. albopictus still underwent basic growth and development processes. Mosquitoes in the simulated field environment were more susceptible to DENV-2 than those in the simulated laboratory environment. In the midgut, viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 14.459, P = 0.01); ovarian viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 8.656, P < 0.001), but there was no significant difference in the viral load at other time points (P > 0.05). Dicer-2 mRNA expression on day 7 in winter was 4.071 times than that on day 7 in summer: the viral load and Dicer-2 expression correlated moderately. Ae. albopictus could still develop and transmit dengue virus in winter in Guangzhou. Mosquitoes under simulated field conditions were more susceptible to DENV-2 than those under simulated laboratory conditions.
Funder
The Natural Science Foundation of China
The Natural Science Foundation of Guangdong Province
The Science and Technology Planning Project of Guangzhou
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献