Systematic characterization of the effective constituents and molecular mechanisms of Ardisiae Japonicae Herba using UPLC-Orbitrap Fusion MS and network pharmacology

Author:

Feng SuxiangORCID,Yuan Jie,Zhao Di,Li Rongrong,Liu Xuefang,Tian Yange,Li Jiansheng

Abstract

Objective Ardisiae Japonicae Herba (AJH), the dried whole herb of Ardisia japonica (Thunb.) Blume [Primulaceae], has been used in treating chronic obstructive pulmonary disease (COPD) in China. However, the material basis and molecular mechanisms of AJH against COPD remain unclear. Therefore, in this study, we attempt to establish a systematic approach to elucidate the material basis and molecular mechanisms through compound identification, network analysis, molecular docking, and experimental validation. Methods Ultra-high performance liquid chromatography-Orbitrap Fusion mass spectrometry (UPLC-Orbitrap Fusion MS) was used to characterize the chemical compounds of AJH. The SwissTargetPrediction, String and Metascape databases were selected for network pharmacology analysis, including target prediction, protein-protein interaction (PPI) network analysis, GO and KEGG pathway enrichment analysis. Cytoscape 3.7.2 software was used to construct a component-target-pathway network to screen out the main active compounds. Autodock Vina software was used to verify the affinity between the key compounds and targets. TNF-α-stimulated A549 cell inflammation model was built to further verify the anti-inflammatory effects of active compounds. Results Altogether, 236 compounds were identified in AJH, including 33 flavonoids, 21 Phenylpropanoids, 46 terpenes, 7 quinones, 27 steroids, 71 carboxylic acids and 31 other compounds. Among them, 41 compounds were selected as the key active constituents, which might exhibit therapeutic effects against COPD by modulating 65 corresponding targets primarily involved in inflammation/metabolism/immune-related pathways. The results of molecular docking showed that the key compounds could spontaneously bind to the receptor proteins with a strong binding ability. Finally, the anti-inflammatory effects of the three active compounds were validated with the decreased levels of Interleukin-6 (IL-6) and Matrix Metalloproteinase 9 (MMP9) in TNF-α-induced A549 cells model. Conclusion This study clarified that AJH may exert therapeutic actions for COPD via regulating inflammation/immune/metabolism-related pathways using UPLC-Orbitrap Fusion MS technology combined with network pharmacology for the first time. This study had a deeper exploration of the chemical components and pharmacological activities in AJH, which provided a reference for the further study and clinical application of AJH in the treatment of COPD.

Funder

Henan Provincial Science and Technology Research Project

Henan University of Chinese Medicine In-school Support projects

Henan scientific research of Chinese Medicine special projects

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3