Synthesis and biological evaluation of thiazolidine-2-thione derivatives as novel xanthine oxidase inhibitors

Author:

Wang Mu-Xuan,Qin Hong-Wei,Liu ChaoORCID,Lv Shen-Ming,Chen Jia-Shu,Wang Chun-Gu,Chen Ying-Ying,Wang Jia-Wei,Sun Jin-Yue,Liao Zhi-Xin

Abstract

Xanthine oxidase (XO) is a key enzyme in the generation and development of hyperuricemia. Thiazolidine-2-thione, a typical heterocyclic compound, have been widely used in the field of drug synthesis. In this study, a series of novel thiazolidine-2-thione derivatives were synthesized as XO inhibitors, and the XO inhibitory potencies of obtained compounds were evaluated by in vitro enzyme catalysis. The result shown that compound 6k behaved the strongest XO inhibitory activity with an IC50 value of 3.56 μmol/L, which was approximately 2.5-fold more potent than allopurinol. The structure-activity relationship revealed that the phenyl-sulfonamide group was indispensable for thiazolidine-2-thione derivatives to produce XO inhibitory activity. The enzyme inhibition kinetics analyses confirmed that compound 6k exerted a mixed-type XO inhibition. Additionally, the molecular docking results suggested that the 4-fluorophenyl-sulfonyl moiety could interact with Gly260 and Ile264 in the innermost part of the active pocket through 2 hydrogen bonds, while the thiazolidinethione moiety could form two hydrogen bonds with Glu263 and Ser347 in hydrophobic pockets. In summary, the results described above suggested that compound 6k could be a valuable lead compound for the treatment of hyperuricemia as a novel XO inhibitor.

Funder

National Natural Science Foundation of China

Postgraduate Research&Practice Innovation Program of Jiangsu Province

National Key R&D Program of China

Provincial Major Scientific and Technological Innovation Project of Shandong

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3