Disturbance observer-based adaptive position control for a cutterhead anti-torque system

Author:

Zhang HangjunORCID,Fang Jinhui,Yu Huan,Hu Huibin,Yang Yuzhu

Abstract

To conveniently replace worn cutterhead tools in complicated strata, a novel cutterhead attitude control mechanism was recently designed. Meanwhile, the mechanism also causes an engineering problem of how to control a matching cutterhead anti-torque system (CATS) effectively, which is used to prevent a drive box of the cutterhead from rotation during a complex excavation process. In this paper, a disturbance observer-based adaptive position controller is proposed for the CATS. The proposed method presents a nonlinear adaptive controller with adaptation laws to compensate for the unknown time-varying load torque and damping uncertainty in the system. Based on the disturbance observer method and sliding mode control, an asymptotically stable controller proven by Lyapunov theory is constructed using the back-stepping technique. In addition, a virtual test rig based on MATLAB and AMESim co-simulation is built to verify the validity of the proposed controller. The simulation results show that the proposed method has good performance for tracking tasks in the presence of uncertainties compared with PID control. Together, the data support targeting disturbance observer-based adaptive position control as a potential control strategy for cutterhead anti-torque systems.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. Pose and trajectory control of shield tunneling machine in complicated stratum;LT Wang;Automation in Construction,2018

2. Soil improvement of EPBS construction in high water pressure and high permeability sand stratum;SM Wang;Advances in Civil Engineering,2019

3. Predictive control of slurry pressure balance in shield tunneling using diagonal recurrent neural network and evolved particle swarm optimization;XF Li;Automation in Construction,2019

4. Creating a working space for modifying and maintaining the cutterhead of a large-diameter slurry shield: A case study of Beijing railway tunnel construction;XG Li;Tunnelling and Underground Space Technology,2018

5. Geological environment problems during metro shield tunnelling in Shenzhen;XC He;China. Arabian Journal of Geosciences,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3