Integral equation solutions for the average run length for monitoring shifts in the mean of a generalized seasonal ARFIMAX(P, D, Q, r)s process running on a CUSUM control chart

Author:

Areepong YupapornORCID,Peerajit WilasineeORCID

Abstract

The CUSUM control chart is suitable for detecting small to moderate parameter shifts for processes involving autocorrelated data. The average run length (ARL) can be used to assess the ability of a CUSUM control chart to detect changes in a long-memory seasonal autoregressive fractionally integrated moving average with exogenous variable (SARFIMAX) process with underlying exponential white noise. Herein, new ARLs via an analytical integral equation (IE) solution as an analytical IE and a numerical IE method to test a CUSUM control chart’s ability to detect a wide range of shifts in the mean of a SARFIMAX(P, D, Q, r)s process with underlying exponential white noise are presented. The analytical IE formulas were derived by using the Fredholm integral equation of the second type while the numerical IE method for the approximate ARL is based on quadrature rules. After applying Banach’s fixed-point theorem to guarantee its existence and uniqueness, the precision of the proposed analytical IE ARL was the same as the numerical IE method. The sensitivity and accuracy of the ARLs based on both methods were assessed on a CUSUM control chart running a SARFIMAX(P, D, Q, r)s process with underlying exponential white noise. The results of an extensive numerical study comprising the examination of a wide variety of out-of-control situations and computational schemes reveal that none of the methods outperformed the IE. Specifically, the computational scheme is easier and can be completed in one step. Hence, it is recommended for use in this situation. An illustrative example based on real data is also provided, the results of which were found to be in accordance with the research results.

Funder

King Mongkut’s University of Technology North Bangkok

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3