Conservation of carbon resources and values on public lands: A case study from the National Wildlife Refuge System

Author:

Zhu ZhiliangORCID,Middleton Beth,Pindilli EmilyORCID,Johnson Darren,Johnson Kurt,Covington ScottORCID

Abstract

Public lands in the United States are those land areas managed by federal, state, and county governments for public purposes such as preservation and recreation. Protecting carbon resources and increasing carbon sequestration capacity are compatible with public land management objectives for healthy and resilient habitats, i.e., managing habitats for the benefit of wildlife and ecosystem services can simultaneously capture and store carbon. To evaluate the effect of public land management on carbon storage and review carbon management as part of the land management objectives, we used existing data of carbon stock and net ecosystem carbon balance in a study of the National Wildlife Refuge System (NWRS), a public land management program of the U.S. Fish and Wildlife Service (Service). Total carbon storage of the 364 refuges studied was 16.6 PgC, with a mean value 42,981 gCm-2. We used mixed modeling with Bonferroni adjustment techniques to analyze the effect of time since refuge designation on carbon storage. In general, older refuges store more carbon per unit area than younger refuges. In addition to the age factor, carbon resources are variable by regions and habitat types protected in the refuges. Mean carbon stock and the rate of sequestration are higher within refuges than outside refuges, but the statistical comparison of 364 refuges analyzed in this study was not significant. We also used the social cost of carbon to analyze the annual benefits of sequestrating carbon in these publicly managed lands in the United States, which is over $976 million per year in avoided CO2 emissions via specific conservation management actions. We examine case studies of management, particularly with respect to Service cooperation activities with The Conservation Fund (TCF) Go Zero® Program, Trust for Public Land (TPL) and individuals. Additional opportunities exist in improving techniques to maximize carbon resources in refuges, while continuing to meet the core purpose and need of the NWRS.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. Terrestrial ecosystems—National inventory of vegetation and land use (ver. 1.1, August 2016): U.S.;KJ Gergely;Geological Survey Fact Sheet 2013–3085,2016

2. Opportunities and Challenges for Carbon Management on U.S. Public Lands

3. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States;Z Tan;Proc Natl Acad Sci USA,2015

4. Climate change and western public lands: a survey of U.S. federal land managers on the status of adaptation efforts;KM Archie;Ecol Soc,2012

5. Federal lands greenhouse emissions and sequestration in the United States—Estimates for 2005–14: U.S;MD Merrill;Geological Survey Scientific Investigations Report 2018–5131,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3