Sim2Ls: FAIR simulation workflows and data

Author:

Hunt Martin,Clark Steven,Mejia Daniel,Desai Saaketh,Strachan Alejandro

Abstract

Just like the scientific data they generate, simulation workflows for research should be findable, accessible, interoperable, and reusable (FAIR). However, while significant progress has been made towards FAIR data, the majority of science and engineering workflows used in research remain poorly documented and often unavailable, involving ad hoc scripts and manual steps, hindering reproducibility and stifling progress. We introduce Sim2Ls (pronounced simtools) and the Sim2L Python library that allow developers to create and share end-to-end computational workflows with well-defined and verified inputs and outputs. The Sim2L library makes Sim2Ls, their requirements, and their services discoverable, verifies inputs and outputs, and automatically stores results in a globally-accessible simulation cache and results database. This simulation ecosystem is available in nanoHUB, an open platform that also provides publication services for Sim2Ls, a computational environment for developers and users, and the hardware to execute runs and store results at no cost. We exemplify the use of Sim2Ls using two applications and discuss best practices towards FAIR simulation workflows and associated data.

Funder

National Science Foundation

National Nuclear Security Administration

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. Reproducibility crisis;Monya Baker;Nature,2016

2. What does research reproducibility mean?;Steven N Goodman;Science translational medicine,2016

3. Machine learning for molecular and materials science;Keith T Butler;Nature,2018

4. Data-driven materials science: status, challenges, and perspectives;Lauri Himanen;Advanced Science,2019

5. The fair guiding principles for scientific data management and stewardship;Mark D Wilkinson;Scientific data,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3