A novel hybrid soft computing optimization framework for dynamic economic dispatch problem of complex non-convex contiguous constrained machines

Author:

Ahmed Ijaz,Alvi Um-E-Habiba,Basit Abdul,Khursheed Tayyaba,Alvi Alwena,Hong Keum-ShikORCID,Rehan Muhammad

Abstract

The reformations of the electrical power sector have resulted in very dynamic and competitive market that has changed many elements of the power industry. Excessive demand of energy, depleting the fossil fuel reserves of planet and releasing the toxic air pollutant, has been causing harm to earth habitats. In this new situation, insufficiency of energy supplies, rising power generating costs, high capital cost of renewable energy equipment, environmental concerns of wind power turbines, and ever-increasing demand for electrical energy need efficient economic dispatch. The objective function in practical economic dispatch (ED) problem is nonlinear and non-convex, with restricted equality and inequality constraints, and traditional optimization methods are incapable of resolving such non-convex problems. Over the recent decade, meta-heuristic optimization approaches have acquired enormous reputation for obtaining a solution strategy for such types of ED issues. In this paper, a novel soft computing optimization technique is proposed for solving the dynamic economic dispatch problem (DEDP) of complex non-convex machines with several constraints. Our premeditated framework employs the genetic algorithm (GA) as an initial optimizer and sequential quadratic programming (SQP) for the fine tuning of the pre-optimized run of GA. The simulation analysis of GA-SQP performs well by acquiring less computational cost and finite time of execution, while providing optimal generation of powers according to the targeted power demand and load, whereas subject to valve point loading effect (VPLE) and multiple fueling option (MFO) constraints. The adequacy of the presented strategy concerning accuracy, convergence as well as reliability is verified by employing it on ten benchmark case studies, including non-convex IEEE bus system at the same time also considering VPLE of thermal power plants. The potency of designed optimization seems more robust with fast convergence rate while evaluating the hard bounded DEDP. Our suggested hybrid method GA-SQP converges to achieve the best optimal solution in a confined environment in a limited number of simulations. The simulation results demonstrate applicability and adequacy of the given hybrid schemes over conventional methods.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy, Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3