Application of principal component analysis on temporal evolution of COVID-19

Author:

Nobi Ashadun,Tuhin Kamrul Hasan,Lee Jae WooORCID

Abstract

The COVID-19 is one of the worst pandemics in modern history. We applied principal component analysis (PCA) to the daily time series of the COVID-19 death cases and confirmed cases for the top 25 countries from April of 2020 to February of 2021. We calculated the eigenvalues and eigenvectors of the cross-correlation matrix of the changes in daily accumulated data over monthly time windows. The largest eigenvalue describes the overall evolution dynamics of the COVID-19 and indicates that evolution was faster in April of 2020 than in any other period. By using the first two PC coefficients, we can identify the group dynamics of the COVID-19 evolution. We observed groups under critical states in the loading plot and found that American and European countries are represented by strong clusters in the loading plot. The first PC plays an important role and the correlations (C1) between the normalized logarithmic changes in deaths or confirmed cases and the first PCs may be used as indicators of different phases of the COVID-19. By varying C1 over time, we identified different phases of the COVID-19 in the analyzed countries over the target time period.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference28 articles.

1. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies.;A Sharma;Int J Antimicrob Agents,2020

2. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle;H Lu;J Med Virol,2020

3. The SARS-CoV-2 outbreak;D Wu;What we know. Int J Infect Dis,2020

4. The outbreak of COVID-19: An overview.;YC Wu;J. Chin. Med. Assoc,2020

5. WHO press conference. COVID-19. https://bit.ly/3uYY2Tq

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3