Abstract
The COVID-19 is one of the worst pandemics in modern history. We applied principal component analysis (PCA) to the daily time series of the COVID-19 death cases and confirmed cases for the top 25 countries from April of 2020 to February of 2021. We calculated the eigenvalues and eigenvectors of the cross-correlation matrix of the changes in daily accumulated data over monthly time windows. The largest eigenvalue describes the overall evolution dynamics of the COVID-19 and indicates that evolution was faster in April of 2020 than in any other period. By using the first two PC coefficients, we can identify the group dynamics of the COVID-19 evolution. We observed groups under critical states in the loading plot and found that American and European countries are represented by strong clusters in the loading plot. The first PC plays an important role and the correlations (C1) between the normalized logarithmic changes in deaths or confirmed cases and the first PCs may be used as indicators of different phases of the COVID-19. By varying C1 over time, we identified different phases of the COVID-19 in the analyzed countries over the target time period.
Funder
National Research Foundation of Korea
Publisher
Public Library of Science (PLoS)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献