Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments

Author:

Morgan Ian L.ORCID,Saleh Omar A.

Abstract

Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical tweezers) often use video tracking to measure the three-dimensional position of micron-scale beads under an applied force. The force in these experiments is calibrated by comparing the bead trajectory to a thermal motion-based model with the drag coefficient, γ, and trap spring constant, κ, as parameters. Estimating accurate parameters is complicated by systematic biases from spectral distortions, the camera exposure time, parasitic noise, and least-squares fitting methods. However, while robust calibration methods exist that correct for these biases, they are not always used because they can be complex to implement computationally. To address this barrier, we present Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments. Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their uncertainties from a single bead trajectory via the power spectral density (PSD) and Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most common sources of biases in SMFS video-tracking experiments. Here, we provide a comprehensive overview of Tweezepy’s calibration scheme, including a review of the theory underlying thermal motion-based parameter estimates, a discussion of the PSD, AV, and MLE, and an explanation of their implementation.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3