How large of a grant size is appropriate? Evidence from the National Natural Science Foundation of China

Author:

Duan PeixinORCID

Abstract

Under the current universal trend towards larger grant sizes in research funding systems, we focus on how large of a grant size is appropriate. We study the directional returns to scale (RTS) to assess whether current grant sizes are the most productive. We take the General Program of the National Natural Science Foundation of China (NSFC) as an example and select three samples of physics, geography and management for an empirical study. We find that the optimal input direction and the most productive grant size scale is different for the three disciplines; based on the current grant size, physics should not expand the grant size and team size input, geography should further increase the grant size to improve performance and management should further expand the team size rather than the grant size. In this paper, we demonstrate a new method to calculate the optimal direction, which is the lowest rate of congestion, according to the characteristics of the General Program. Based on these results, we also calculate the most productive scale size. This method has certain value for project management.

Funder

National Natural Science Foundation of China

Key R&D plan of Shandong Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference64 articles.

1. Bloch C, Sørensen MP, Ravn T. Evaluation of Research Project Grants of the Danish Council for Independent Research-Main report. Copenhagen: Danish Agency for Science, Technology and Innovation. 2011. Danish.

2. On the biomedical elite: Inequality and stasis in scientific knowledge production;Y Katz;Berkman Klein Center for Internet & Society Research Publication,2017

3. Which scientific elites? On the concentration of research funds, publications and citations;V Larivière;Research Evaluation,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3