Emotion diffusion effect: Negative sentiment COVID-19 tweets of public organizations attract more responses from followers

Author:

Yu Haiyan,Yang Ching-ChiORCID,Yu Ping,Liu Ke

Abstract

Coronavirus disease 2019 (COVID-19) has triggered an enormous number of discussion topics on social media Twitter. It has an impact on the global health system and citizen responses to the pandemic. Multiple responses (replies, favorites, and retweets) reflect the followers’ attitudes and emotions towards these tweets. Twitter data such as these have inspired substantial research interest in sentiment and social trend analyses. To date, studies on Twitter data have focused on the associational relationships between variables in a population. There is a need for further discovery of causality, such as the influence of sentiment polarity of tweet response on further discussion topics. These topics often reflect the human perception of COVID-19. This study addresses this exact topic. It aims to develop a new method to unveil the causal relationships between the sentiment polarity and responses in social media data. We employed sentiment polarity, i.e., positive or negative sentiment, as the treatment variable in this quasi-experimental study. The data is the tweets posted by nine authoritative public organizations in four countries and the World Health Organization from December 1, 2019, to May 10, 2020. Employing the inverse probability weighting model, we identified the treatment effect of sentiment polarity on the multiple responses of tweets. The topics with negative sentiment polarity on COVID-19 attracted significantly more replies (69±49) and favorites (688±677) than the positive tweets. However, no significant difference in the number of retweets was found between the negative and positive tweets. This study contributes a new method for social media analysis. It generates new insight into the influence of sentiment polarity of tweets about COVID-19 on tweet responses.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Building the sustainable city through Twitter: Creative skilled migrants and innovative technology use.;P Monachesi;Telematics and Informatics,2021

2. Do President Trump’s tweets affect financial markets?;P Gjerstad;Decision Support Systems,2021

3. Going viral: How a single tweet spawned a COVID-19 conspiracy theory on Twitter.;A Gruzd;Big Data & Society.,2020

4. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University & Medicine September 13, 2020. Available from: https://coronavirus.jhu.edu/map.html.

5. Twitter as a rapid response news service: An exploration in the context of the 2008 China earthquake;J Li;The Electronic Journal of Information Systems in Developing Countries,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3