Cognitive workload evaluation of landmarks and routes using virtual reality

Author:

Abdurrahman Usman AlhajiORCID,Zheng Lirong,Yeh Shih-Ching

Abstract

Investigating whether landmarks and routes affect navigational efficiency and learning transfer in traffic is essential. In this study, a virtual reality-based driving system was employed to determine the effects of landmarks and routes on human neurocognitive behavior. The participants made four (4) journeys to predetermined destinations. They were provided with different landmarks and routes to aid in reaching their respective destinations. We considered two (2) groups and conducted two (2) sessions per group in this study. Each group had sufficient and insufficient landmarks. We hypothesized that using insufficient landmarks would elicit an increase in psychophysiological activation, such as increased heart rate, eye gaze, and pupil size, which would cause participants to make more errors. Moreover, easy and difficult routes elicited different cognitive workloads. Thus, a high cognitive load would negatively affect the participants when trying to apply the knowledge acquired at the beginning of the exercise. In addition, the navigational efficiency of routes with sufficient landmarks was remarkably higher than that of routes with insufficient landmarks. We evaluated the effects of landmarks and routes by assessing the recorded information of the drivers’ pupil size, heart rate, and driving performance data. An analytical strategy, several machine learning algorithms, and data fusion methods have been employed to measure the neurocognitive load of each participant for user classification. The results showed that insufficient landmarks and difficult routes increased pupil size and heart rate, which caused the participants to make more errors. The results also indicated that easy routes with sufficient landmarks were deemed more efficient for navigation, where users’ cognitive loads were much lower than those with insufficient landmarks and difficult routes. The high cognitive workload hindered the participants when trying to apply the knowledge acquired at the beginning of the exercise. Meanwhile, the data fusion method achieved higher accuracy than the other classification methods. The results of this study will help improve the use of landmarks and design of driving routes, as well as paving the way to analyze traffic safety using the drivers’ cognition and performance data.

Funder

Chinese Government Scholarship

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

1. National travel survey analysis;G Stokes;Transport Studies Unit, School of Geography and the Environment,2011

2. The development of spatial representations of large-scale environments;AW Siegel;Advances in child development and behavior,1975

3. A new framework for understanding the acquisition of spatial knowledge in large-scale environments;DR Montello;Spatial and temporal reasoning in geographic information systems,1998

4. Errors in everyday routefinding: a classification of types and possible causes;J Williamson;Applied cognitive psychology,1994

5. Assessing the Influence of Landmarks and Paths on the Navigational Efficiency and the Cognitive Load of Indoor Maps;H Fang;ISPRS International Journal of Geo-Information,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3