The mucosal barrier and anti-viral immune responses can eliminate portions of the viral population during transmission and early viral growth

Author:

Moriarty Ryan V.ORCID,Golfinos Athena E.,Gellerup Dane D.,Schweigert Hannah,Mathiaparanam Jaffna,Balgeman Alexis J.,Weiler Andrea M.,Friedrich Thomas C.ORCID,Keele Brandon F.,Davenport Miles P.,Venturi Vanessa,O’Connor Shelby L.ORCID

Abstract

Little is known about how specific individual viral lineages replicating systemically during acute Human Immunodeficiency Virus or Simian Immunodeficiency Virus (HIV/SIV) infection persist into chronic infection. In this study, we use molecularly barcoded SIV (SIVmac239M) to track distinct viral lineages for 12 weeks after intravenous (IV) or intrarectal (IR) challenge in macaques. Two Mafa-A1*063+ cynomolgus macaques (Macaca fascicularis, CM) were challenged IV, and two Mamu-A1*001+ rhesus macaques (Macaca mulatta, RM) were challenged IR with 200,000 Infectious Units (IU) of SIVmac239M. We sequenced the molecular barcode of SIVmac239M from all animals over the 12 weeks of the study to characterize the diversity and persistence of virus lineages. During the first three weeks post-infection, we found ~70–560 times more unique viral lineages circulating in the animals challenged IV compared to those challenged IR, which is consistent with the hypothesis that the challenge route is the primary driver restricting the transmission of individual viral lineages. We also characterized the sequences of T cell epitopes targeted during acute SIV infection, and found that the emergence of escape variants in acutely targeted epitopes can occur on multiple virus templates simultaneously, but that elimination of some of these templates is likely a consequence of additional host factors. These data imply that virus lineages present during acute infection can still be eliminated from the systemic virus population even after initial selection.

Funder

NIH Office of the Director

National Institute of Allergy and Infectious Diseases

National Cancer Institute

Australian NHMRC

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3