Quality versus emergency: How good were ventilation fittings produced by additive manufacturing to address shortages during the COVID19 pandemic?

Author:

Khonsari Roman HosseinORCID,Oranger Mathilde,François Pierre-Marc,Mendoza-Ruiz Alexis,Leroux Karl,Boussaid Ghilas,Prieur Delphine,Hodge Jean-Pierre,Belle Antoine,Midler Vincent,Morelot-Panzini Capucine,Patout MaximeORCID,Gonzalez-Bermejo Jésus

Abstract

Objective The coronavirus disease pandemic (COVID-19) increased the risk of shortage in intensive care devices, including fittings with intentional leaks. 3D-printing has been used worldwide to produce missing devices. Here we provide key elements towards better quality control of 3D-printed ventilation fittings in a context of sanitary crisis. Material and methods Five 3D-printed designs were assessed for non-intentional (junctional and parietal) and intentional leaks: 4 fittings 3D-printed in-house using FDeposition Modelling (FDM), 1 FDM 3D-printed fitting provided by an independent maker, and 2 fittings 3D-printed in-house using Polyjet technology. Five industrial models were included as controls. Two values of wall thickness and the use of coating were tested for in-house FDM-printed devices. Results Industrial and Polyjet-printed fittings had no parietal and junctional leaks, and satisfactory intentional leaks. In-house FDM-printed fittings had constant parietal leaks without coating, but this post-treatment method was efficient in controlling parietal sealing, even in devices with thinner walls (0.7 mm vs 2.3 mm). Nevertheless, the use of coating systematically induced absent or insufficient intentional leaks. Junctional leaks were constant with FDM-printed fittings but could be controlled using rubber junctions rather than usual rigid junctions. The properties of Polyjet-printed and FDM-printed fittings were stable over a period of 18 months. Conclusions 3D-printing is a valid technology to produce ventilation devices but requires care in the choice of printing methods, raw materials, and post-treatment procedures. Even in a context of sanitary crisis, devices produced outside hospitals should be used only after professional quality control, with precise data available on printing protocols. The mechanical properties of ventilation devices are crucial for efficient ventilation, avoiding rebreathing of CO2, and preventing the dispersion of viral particles that can contaminate health professionals. Specific norms are still required to formalise quality control procedures for ventilation fittings, with the rise of 3D-printing initiatives and the perspective of new pandemics.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3