Genome-wide investigation and functional analysis of RNA editing sites in wheat

Author:

Rasool Fatima,Ishtiaq Iqra,Uzair MuhammadORCID,Naz Ali Ahmed,Léon Jens,Khan Muhammad Ramzan

Abstract

Wheat is an important cereal and half of the world population consumed it. Wheat faces environmental stresses and different techniques (CRISPR, gene silencing, GWAS, etc.) were used to enhance its production but RNA editing (RESs) is not fully explored in wheat. RNA editing has a special role in controlling environmental stresses. The genome-wide identification and functional characterization of RESs in different types of wheat genotypes was done. We employed six wheat genotypes by RNA-seq analyses to achieve RESs. The findings revealed that RNA editing events occurred on all chromosomes equally. RNA editing sites were distributed randomly and 10–12 types of RESs were detected in wheat genotypes. Higher number of RESs were detected in drought-tolerant genotypes. A-to-I RNA editing (2952, 2977, 1916, 2576, 3422, and 3459) sites were also identified in six wheat genotypes. Most of the genes were found to be engaged in molecular processes after a Gene Ontology analysis. PPR (pentatricopeptide repeat), OZ1 (organelle zinc-finger), and MORF/RIP gene expression levels in wheat were also examined. Normal growth conditions diverge gene expression of these three different gene families, implying that normal growth conditions for various genotypes can modify RNA editing events and have an impact on gene expression levels. While the expression of PPR genes was not change. We used Variant Effect Predictor (VEP) to annotate RNA editing sites, and Local White had the highest RESs in the CDS region of the protein. These findings will be useful for prediction of RESs in other crops and will be helpful in drought tolerance development in wheat.

Funder

ALP, PARC, Pakistan, DAAD, Germany.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3