DOPE++: 6D pose estimation algorithm for weakly textured objects based on deep neural networks

Author:

Jin Mei,Li JiaqingORCID,Zhang Liguo

Abstract

This paper focuses on 6D pose estimation for weakly textured targets from RGB-D images. A 6D pose estimation algorithm (DOPE++) based on a deep neural network for weakly textured objects is proposed to solve the poor real-time pose estimation and low recognition efficiency in the robot grasping process of parts with weak texture. More specifically, we first introduce the depthwise separable convolution operation to lighten the original deep object pose estimation (DOPE) network structure to improve the network operation speed. Second, an attention mechanism is introduced to improve network accuracy. In response to the low recognition efficiency of the original DOPE network for parts with occlusion relationships and the false recognition problem in recognizing parts with scales that are too large or too small, a random mask local processing method and a multiscale fusion pose estimation module are proposed. The results show that our proposed DOPE++ network improves the real-time performance of 6D pose estimation and enhances the recognition of parts at different scales without loss of accuracy. To address the problem of a single background representation of the part pose estimation dataset, a virtual dataset is constructed for data expansion to form a hybrid dataset.

Funder

Great Project of Ministry of Industrialization and Information of China

Hebei Province Science and Technology Support Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection-driven 3D masking for efficient object grasping;The International Journal of Advanced Manufacturing Technology;2023-11-09

2. Development of Visual and Tactile based Human Behavior Imitation Learning Platform;2023 14th International Conference on Information and Communication Technology Convergence (ICTC);2023-10-11

3. Detection-driven 3D Masking for Efficient Object Grasping;2023-04-26

4. 6D Object Localization in Car-Assembly Industrial Environment;Journal of Imaging;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3