Abstract
This paper focuses on 6D pose estimation for weakly textured targets from RGB-D images. A 6D pose estimation algorithm (DOPE++) based on a deep neural network for weakly textured objects is proposed to solve the poor real-time pose estimation and low recognition efficiency in the robot grasping process of parts with weak texture. More specifically, we first introduce the depthwise separable convolution operation to lighten the original deep object pose estimation (DOPE) network structure to improve the network operation speed. Second, an attention mechanism is introduced to improve network accuracy. In response to the low recognition efficiency of the original DOPE network for parts with occlusion relationships and the false recognition problem in recognizing parts with scales that are too large or too small, a random mask local processing method and a multiscale fusion pose estimation module are proposed. The results show that our proposed DOPE++ network improves the real-time performance of 6D pose estimation and enhances the recognition of parts at different scales without loss of accuracy. To address the problem of a single background representation of the part pose estimation dataset, a virtual dataset is constructed for data expansion to form a hybrid dataset.
Funder
Great Project of Ministry of Industrialization and Information of China
Hebei Province Science and Technology Support Program
Publisher
Public Library of Science (PLoS)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献