Explainable AI toward understanding the performance of the top three TADPOLE Challenge methods in the forecast of Alzheimer’s disease diagnosis

Author:

Hernandez MonicaORCID,Ramon-Julvez Ubaldo,Ferraz Francisco,

Abstract

The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer′s. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer’s disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI).

Funder

Ministerio de Ciencia, Innovación y Universidades

Gobierno de Aragón

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. Alzheimer’s disease;A Burns;Brit Med J,2009

2. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?;A Reeve;Ageing Res Rev,2014

3. The age factor in Alzheimer’s disease;R Guerreiro;Genome Med,2015

4. New approaches for prevention and treatment of Alzheimer’s disease: a fascinating challenge;L Piemontese;Neural Regen Res,2017

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3