Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation

Author:

Park Chan-Woo,Oh Seong-JeORCID,Kim Kyung-Su,Jang Min-Chang,Kim Il Su,Lee Young-Keun,Chung Myung Jin,Cho Baek Hwan,Seo Sung-WookORCID

Abstract

Purpose Early detection and classification of bone tumors in the proximal femur is crucial for their successful treatment. This study aimed to develop an artificial intelligence (AI) model to classify bone tumors in the proximal femur on plain radiographs. Methods Standard anteroposterior hip radiographs were obtained from a single tertiary referral center. A total of 538 femoral images were set for the AI model training, including 94 with malignant, 120 with benign, and 324 without tumors. The image data were pre-processed to be optimized for training of the deep learning model. The state-of-the-art convolutional neural network (CNN) algorithms were applied to pre-processed images to perform three-label classification (benign, malignant, or no tumor) on each femur. The performance of the CNN model was verified using fivefold cross-validation and was compared against that of four human doctors. Results The area under the receiver operating characteristic (AUROC) of the best performing CNN model for the three-label classification was 0.953 (95% confidence interval, 0.926–0.980). The diagnostic accuracy of the model (0.853) was significantly higher than that of the four doctors (0.794) (P = 0.001) and also that of each doctor individually (0.811, 0.796, 0.757, and 0.814, respectively) (P<0.05). The mean sensitivity, specificity, precision, and F1 score of the CNN models were 0.822, 0.912, 0.829, and 0.822, respectively, whereas the mean values of four doctors were 0.751, 0.889, 0.762, and 0.797, respectively. Conclusions The AI-based model demonstrated high performance in classifying the presence of bone tumors in the proximal femur on plain radiographs. Our findings suggest that AI-based technology can potentially reduce the misdiagnosis of doctors who are not specialists in musculoskeletal oncology.

Funder

National Research Foundation of Korea

Future Medicine 20*30 Project of the Samsung Medical Center

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3