Potential of antiviral peptide-based SARS-CoV-2 inactivators to combat COVID-19

Author:

Gurung Arun BahadurORCID,Ali Mohammad Ajmal,Lee Joongku,El-Zaidy Mohamed,Aljowaie Reem M.,Almutairi Saeedah M.

Abstract

The appearance of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of effective antiviral therapeutics for coronavirus disease 2019 (COVID-19), a highly infectious disease caused by the virus, demands the search for alternative therapies. Most antiviral drugs known are passive defenders which must enter the cell to execute their function and suffer from concerns such as permeability and effectiveness, therefore in this current study, we aim to identify peptide inactivators that can act without entering the cells. SARS-CoV-2 spike protein is an essential protein that plays a major role in binding to the host receptor angiotensin-converting enzyme 2 and mediates the viral cell membrane fusion process. SARS vaccines and treatments have also been developed with the spike protein as a target. The virtual screening experiment revealed antiviral peptides which were found to be non-allergen, non-toxic and possess good water solubility. U-1, GST-removed-HR2 and HR2-18 exhibit binding energies of -47.8 kcal/mol, -43.01 kcal/mol, and -40.46 kcal/mol, respectively. The complexes between these peptides and spike protein were stabilized through hydrogen bonds as well as hydrophobic interactions. The stability of the top-ranked peptide with the drug-receptor is evidenced by 50-ns molecular dynamics (MD) simulations. The binding of U-1 induces conformational changes in the spike protein with alterations in its geometric properties such as increased flexibility, decreased compactness, the increased surface area exposed to solvent molecules, and an increase in the number of total hydrogen bonds leading to its probable inactivation. Thus, the identified antiviral peptides can be used as anti-SARS-CoV-2 candidates, inactivating the virus’s spike proteins and preventing it from infecting host cells.

Funder

King Saud University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Characteristics of SARS-CoV-2 and COVID-19;B Hu;Nat Rev Microbiol,2021

2. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update;M Pal;Cureus,2020

3. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding;R Lu;Lancet,2020

4. A genomic perspective on the origin and emergence of SARS-CoV-2;Y-Z Zhang;Cell,2020

5. Coronaviruses post-SARS: update on replication and pathogenesis;S Perlman;Nat Rev Microbiol,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3