Accuracy Assessment of Kriging, artificial neural network, and a hybrid approach integrating spatial and terrain data in estimating and mapping of soil organic carbon

Author:

Kılıç MiraçORCID,Gündoğan Recep,Günal Hikmet,Cemek Bilal

Abstract

This study aimed to produce a soil organic carbon (SOC) content map with high accuracy and spatial resolution using the most effective factors in the model. The spatial SOC estimation success of Inverse Distance Weighting (IDW), Ordinary Kriging (OK), Empirical Bayesian Kriging (EBK), Multi-Layered Perception Network (MLP) and MLP-OK Hybrid models were compared to obtain the most reliable model in estimating the SOC content. The study area was located in Besni district in the Southeastern Anatolia Region of Turkey. Total of 132 surface (0–30 cm) soil samples were collected from the covers 1330 km2 land and analyzed for SOC, lime, clay and sand content and soil reaction included in the estimation models. Mean annual precipitation and temperature, elevation, compound topographic index, enhanced vegetation and normalized difference vegetation index, were also used as the inputs in the modelling. The spatial distribution of SOC was determined using a MLP and a two-stage ensemble model (MLP-OK) combining the estimation of OK residuals. Soil surveys and covariates were used to train and validate the MLP-OK hybrid model. The MLP-OK model provided a more accurate estimation of SOC content with minimal estimation errors (ME: -0.028, 45 MAE: 0.042, RMSE: 0.066) for validation points compared to the other models. The MLP-OK model outperformed other models by 75.09 to 77.92%. The MLP-OK model estimated the lower and upper limits of the estimated and the measured values in a consistent manner compared to the other models. The spatial distribution map of SOC content obtained by ANN-kriging approach was significantly affected by ancillary variables, and revealed more detail than other interpolation methods in the northern, central, southwestern and southeastern parts of the study area. The results revealed that the assembling of MLP with OK model can contribute to obtain more reliable regional, national and global spatial soil information.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference100 articles.

1. Trend analysis of global usage of digital soil mapping models in the prediction of potentially toxic elements in soil/sediments: a bibliometric review;PC Agyeman;Environ Geochem Health,2021

2. International Agrophysics;D Arrouays;Sciendo/De Gruyter,2018

3. The need for digital soil mapping in India;S Dharumarajan;Geoderma Reg,2019

4. Updating Conventional Soil Maps through Digital Soil Mapping;L Yang;Soil Sci Soc Am J,2011

5. On digital soil mapping;A. McBratney;Geoderma,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3