Optimization algorithm of CT image edge segmentation using improved convolution neural network

Author:

Wang Xiaojuan,Wei YuntaoORCID

Abstract

To address the problem of high failure rate and low accuracy in computed tomography (CT) image edge segmentation, we proposed a CT sequence image edge segmentation optimization algorithm using improved convolution neural network. Firstly, the pattern clustering algorithm is applied to cluster the pixels with relationship in the CT sequence image space to extract the edge information of the real CT image; secondly, Euclidean distance is used to calculate similarity and measure similarity, according to the measurement results, convolution neural network (CNN) hierarchical optimization is carried out to improve the convergence ability of CNN; finally, the pixel classification of CT sequence images is carried out, and the edge segmentation of CT sequence images is optimized according to the classification results. The results show that the overall recognition rate of this method is at a high level. The training time is obviously reduced when the training times exceed 12 times, the recall rate is always about 90%, and the accuracy of image segmentation is high, which solves the problem of large failure rate and low accuracy.

Funder

Heilongjiang Provincial Department of Education Natural Science Research Project

the surface scientific and research projects of jiamusi university

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference32 articles.

1. Automated ROI Detection in Left Hand X-ray Images using CNN and RNN;Youngbok Cho;International Journal of Grid and Distributed Computing,2018

2. Al-Sewadi, Implementing Binary Search Tree Concept for Image Cryptography;A. F. Mohammed;International Journal of Advanced Science and Technology,2019

3. Multimodal Transformer with Multi-View Visual Representation for Image Captioning;Jun Yu;IEEE Transactions on Circuits and Systems for Video Technology,2019

4. Hierarchical Deep Click Feature Prediction for Fine-grained Image Recognition;Jun Yu;IEEE Transactions on Pattern Analysis and Machine Intelligence,2019

5. Towards Stabilizing Facial Landmark Detection and Tracking via Hierarchical Filtering: A new method;Yi Jin;Journal of the Franklin Institute

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3