Abstract
Purpose
Lunit INSIGHT CXR (Lunit) is a commercially available deep-learning algorithm-based decision support system for chest radiography (CXR). This retrospective study aimed to evaluate the concordance rate of radiologists and Lunit for thoracic abnormalities in a multicenter health screening cohort.
Methods and materials
We retrospectively evaluated the radiology reports and Lunit results for CXR at several health screening centers in August 2020. Lunit was adopted as a clinical decision support system (CDSS) in routine clinical practice. Subsequently, radiologists completed their reports after reviewing the Lunit results. The DLA result was provided as a color map with an abnormality score (%) for thoracic lesions when the score was greater than the predefined cutoff value of 15%. Concordance was achieved when (a) the radiology reports were consistent with the DLA results (“accept”), (b) the radiology reports were partially consistent with the DLA results (“edit”) or had additional lesions compared with the DLA results (“add”). There was discordance when the DLA results were rejected in the radiology report. In addition, we compared the reading times before and after Lunit was introduced. Finally, we evaluated systemic usability scale questionnaire for radiologists and physicians who had experienced Lunit.
Results
Among 3,113 participants (1,157 men; mean age, 49 years), thoracic abnormalities were found in 343 (11.0%) based on the CXR radiology reports and 621 (20.1%) based on the Lunit results. The concordance rate was 86.8% (accept: 85.3%, edit: 0.9%, and add: 0.6%), and the discordance rate was 13.2%. Except for 479 cases (7.5%) for whom reading time data were unavailable (n = 5) or unreliable (n = 474), the median reading time increased after the clinical integration of Lunit (median, 19s vs. 14s, P < 0.001).
Conclusion
The real-world multicenter health screening cohort showed a high concordance of the chest X-ray report and the Lunit result under the clinical integration of the deep-learning solution. The reading time slight increased with the Lunit assistance.
Funder
Korea Health Industry Development Institute
Publisher
Public Library of Science (PLoS)
Reference17 articles.
1. Machine Learning in Medicine;A Rajkomar;N Engl J Med,2019
2. Regulation of predictive analytics in medicine;RB Parikh;Science,2019
3. Computer Aided Diagnosis of Pneumonia from Chest Radiographs.;P Malhotra;Journal of Computational and Theoretical Nanoscience,2019
4. Computer-aided diagnosis in chest radiography for detection of childhood pneumonia.;LL Oliveira;Int J Med Inform.,2008
5. Detection of Pneumonia from X-Ray Images using Convolutional Neural Network.;H Omar;Proceedings Book.,2019
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献