Morphometrics for sports mechanics: Showcasing tennis racket shape diversity

Author:

Grant Robyn A.,Taraborrelli Luca,Allen TomORCID

Abstract

Tennis racket design has changed from its conception in 1874. While we know that modern tennis rackets are lighter and have larger heads than their wooden predecessors, it is unknown how their gross shape has changed specifically. It is also unknown how racket shape is related to factors that influence performance, like the Transverse and Polar moments of inertia. The aim of this study was to quantify how tennis racket shape has changed over time, with a view to furthering our understanding of how such developments have influenced the game. Two-dimensional morphometric analysis was applied to silhouettes extracted from photographs of 514 rackets dating from 1874 to 2017. A principal component analysis was conducted on silhouette outlines, to allow racket shape to be summarised. The rackets were grouped by age and material for further analysis. Principal Component 1 accounted for 87% of the variation in racket shape. A pairwise Pearson’s correlation test indicated that head width and length were both strongly correlated to Principal Component 1 (r = 0.916 & r = 0.801, p-values<0.001). Principal Component 1 was also correlated to the Polar (r = 0.862, p<0.001) and Transverse (r = -0.506, p<0.001) moments of inertia. Racket age and material had a medium (p<0.001, η2p = 0.074) and small (p = 0.015, η2p = 0.017) effect on Principal Component 1, respectively. Mean racket shapes were also generated from the morphometric analyses for the material and age groupings, and we consider how these shape changes may have influenced performance and injury risk. These mean shape groupings could support the development of models, such as finite element analysis, for predicting how historical developments in tennis equipment have affected performance and injury risk.

Funder

International Sports Engineering Association

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. Designing cricket bats using parametric modeling and genetic algorithms;MS Mazloomi;Wood Sci Technol,2020

2. Comparison of beam theory and finite-element analysis with in vivo bone strain data from the alligator cranium. In: Anatomical Record—Part A Discoveries in Molecular, Cellular, and;KA Metzger;Evolutionary Biology,2005

3. Impact of sports balls with striking implements;R. Cross;Sport Eng,2014

4. Finite element model of a cricket ball impacting a bat;T Allen;Procedia Engineering,2014

5. A comparison of methods for modelling the dynamics of a cricket bat;F. Gutaj;Proc Inst Mech Eng Part C J Mech Eng Sci,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3