Spatiotemporal variation of potential evapotranspiration and its dominant factors during 1970−2020 across the Sichuan-Chongqing region, China

Author:

Zheng QingzhouORCID,He JunORCID,Qin Mengsheng,Wu Xia,Liu Tiantian,Huang Xiaolin

Abstract

Analyzing the primary factors of potential evapotranspiration (PET) dynamic is fundamental to accurately estimating crop yield, evaluating environmental impacts, and understanding water and carbon cycles. Previous studies have focused on regionally average regional PET and its dominant factors. Spatial distributions of PET trends and their main causes have not been fully investigated. The Mann–Kendall test was used to determine the significance of long-term trends in PET and five meteorological factors (net radiation, wind speed, air temperature, vapor pressure deficit, relative humidity) at 56 meteorological stations in the Sichuan-Chongqing region from 1970 to 2020. Furthermore, this present study combining and quantitatively illustrated sensitivities and contributions of the meteorological factors to change in annual and seasonal PET. There was a positive trend in PET for approximately 58%, 68%, 38%, 73% and 73% of all surveyed stations at annual, spring, summer, autumn and winter, respectively. Contribution analysis exhibited that the driving factors for the PET variation varied spatially and seasonally. For stations with an upward PET trend, vapor pressure deficit was a dominant factor at all time scales. For stations with a downward PET trend, annual changes in PET mainly resulted from decreased wind speed, as did changes in spring, autumn and winter; decreasing net radiation was the dominant factor in summer. The positive effect of the vapor pressure deficit offset the negative effects of wind speed and net radiation, leading to the increasing PET in this area as a whole. Sensitivity analysis showed that net radiation and relative humidity were the two most sensitive variables for PET, followed by vapor pressure deficit in this study area. Results from the two mathematical approaches were not perfect match, because the change magnitude of the meteorological factors is also responsible for the effects of meteorological factors on PET variation to some extent. However, conducting sensitivity and contribution analysis in this study can avoid the uncertainties from using a single method and provides detailed and well-understood information for interpreting the influence of global climate change on the water cycle and improving local water management.

Funder

Chongqing key scientific and technological project of Chongqing Meteorological Bureau

Southwestern Regional Meteorological Center of China Meteorological Administration

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference61 articles.

1. Pan evaporation and potential evapotranspiration trends in South Florida;W Abtew;Hydrological Processes,2011

2. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56;R Allen,1998

3. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates;K. Beven;Journal of Hydrology,1979

4. An evaluation of gridded weather data sets for the purpose of estimating reference evapotranspiration in the United States;A Blankenau P;Agricultural Water Management,2020

5. Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China;D Chen;Climate Research,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3