Abstract
The analysis of contingency tables is a powerful statistical tool used in experiments with categorical variables. This study improves parts of the theory underlying the use of contingency tables. Specifically, the linkage disequilibrium parameter as a measure of two-way interactions applied to three-way tables makes it possible to quantify Simpson’s paradox by a simple formula. With tests on three-way interactions, there is only one that determines whether the partial interactions of all variables agree or whether there is at least one variable whose partial interactions disagree. To date, there has been no test available that determines whether the partial interactions of a certain variable agree or disagree, and the presented work closes this gap. This work reveals the relation of the multiplicative and the additive measure of a three-way interaction. Another contribution addresses the question of which cells in a contingency table are fixed when the first- and second-order marginal totals are given. The proposed procedure not only detects fixed zero counts but also fixed positive counts. This impacts the determination of the degrees of freedom. Furthermore, limitations of methods that simulate contingency tables with given pairwise associations are addressed.
Publisher
Public Library of Science (PLoS)
Reference45 articles.
1. Three centuries of categorical data analysis: Log-linear models and maximum likelihood estimation;SE Fienberg;Journal of Statistical Planning and Inference,2007
2. Contingency table interactions;MS Bartlett;Journal of the Royal Statistical Society (Suppl).,1935
3. The interpretation of interaction in contingency tables;EH Simpson;Journal of the Royal Statistical Society, Series B,1951
4. On Simpson’s paradox and the sure-thing principle;CR Blyth;Journal of the American Statistical Association,1972
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献