Optimising the balance of acute and intermediate care capacity for the complex discharge pathway: Computer modelling study during COVID-19 recovery in England

Author:

Onen-Dumlu Zehra,Harper Alison L.,Forte Paul G.,Powell Anna L.,Pitt Martin,Vasilakis Christos,Wood Richard M.ORCID

Abstract

Objectives While there has been significant research on the pressures facing acute hospitals during the COVID-19 pandemic, there has been less interest in downstream community services which have also been challenged in meeting demand. This study aimed to estimate the theoretical cost-optimal capacity requirement for ‘step down’ intermediate care services within a major healthcare system in England, at a time when considerable uncertainty remained regarding vaccination uptake and the easing of societal restrictions. Methods Demand for intermediate care was projected using an epidemiological model (for COVID-19 demand) and regressing upon public mobility (for non-COVID-19 demand). These were inputted to a computer simulation model of patient flow from acute discharge readiness to bedded and home-based Discharge to Assess (D2A) intermediate care services. Cost-optimal capacity was defined as that which yielded the lowest total cost of intermediate care provision and corresponding acute discharge delays. Results Increased intermediate care capacity is likely to bring about lower system-level costs, with the additional D2A investment more than offset by substantial reductions in costly acute discharge delays (leading also to improved patient outcome and experience). Results suggest that completely eliminating acute ‘bed blocking’ is unlikely economical (requiring large amounts of downstream capacity), and that health systems should instead target an appropriate tolerance based upon the specific characteristics of the pathway. Conclusions Computer modelling can be a valuable asset for determining optimal capacity allocation along the complex care pathway. With results supporting a Business Case for increased downstream capacity, this study demonstrates how modelling can be applied in practice and provides a blueprint for use alongside the freely-available model code.

Funder

Health Data Research UK

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3