Hyperspectral image compressed processing: Evolutionary multi-objective optimization sparse decomposition

Author:

WANG LiORCID,WANG Wei

Abstract

In the compressed processing of hyperspectral images, orthogonal matching pursuit algorithm (OMP) can be used to obtain sparse decomposition results. Aimed at the time-complex and difficulty in applying real-time processing, an evolutionary multi-objective optimization sparse decomposition algorithm for hyperspectral images is proposed. Instead of using OMP for the matching process to search optimal atoms, the proposed algorithm explores the idea of reference point non-dominated sorting genetic algorithm (NSGA) to optimize the matching process of OMP. Take two objective function to establish the multi-objective sparse decomposition optimization model, including the largest inner product of matching atoms and image residuals, and the smallest correlation between atoms. Utilize NSGA-III with advantage of high accuracy to solve the optimization model, and the implementation process of NSGA-III-OMP is presented. The experimental results and analysis carried on four hyperspectral datasets demonstrate that, compared with the state-of-the-art algorithms, the proposed NSGA-III-OMP algorithm has effectively improved the sparse decomposition performance and efficiency, and can effectively solve the sparse decomposition optimization problem of hyperspectral images.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Chinese Aeronautical Establishment

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3