Formation of recombinant bifunctional fusion protein: A newer approach to combine the activities of two enzymes in a single protein

Author:

Nilpa Patel,Chintan KapadiaORCID,Sayyed R. Z.ORCID,El Enshasy Hesham,El Adawi Hala,Alhazmi Alaa,Almalki Atiah H.,Haque Shafiul

Abstract

The tissue of insects, pests, and fungi has a chitin layer followed by protein in the cell membrane. The complete biodegradation of chitin and protein-present in the waste requires the action of two enzymes, namely chitinase, and protease. Combining chitinase and protease in a single protein/enzyme will serve as a bifunctional enzyme that can efficiently degrade the chitin and protein-rich biomass. The present study was aimed to fuse these two enzymes to produce a single protein and study the kinetics of the recombinant fusion protein. A chitinase and alkaline protease genes were isolated, cloned, and expressed successfully as a fusion product in heterologous host Escherichia coli. The two native genes were successfully fused in E.coli by using flexible glycine–serine (G4S)2 linker (GGGGS, GS linker). The recombinant fusion protein in E.coli showed hydrolyzed chitin and protein on chitin and bovine serum albumin agar plates confirming the successful cloning and expression of chitinase and protease enzymes in a single fusion protein. The common pUC18-T7 mini vector with the ompA signal sequence helps the extracellular expression of fusion protein efficiently. The native gel electrophoresis revealed a molecular mass of purified protein as 92.0 kDa. The fusion protein’s maximal chitinase and protease activity occurred at pH 5.0 and 8.0 and 30 0C, respectively resembling the individual enzymes’. In the kinetic studies of the fusion protein, it was observed that the presence of metal ions such as Cu2+, Na2+, and Ca2+; significantly enhanced the enzyme activities while organic solvents oxidants and chemicals have drastically affected the activities of both the enzymes in the fusion protein. No such fusion protein has been produced in a heterologous host yet. The reports on fusion protein with biomass-degrading capacity are also scarce. This is probably the first report of a bifunctional chitinase/protease expressed in E. coli.

Funder

Taif University

Universiti Teknologi Malaysia

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3