Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach

Author:

Mahmood Tariq,Li Jianqiang,Pei YanORCID,Akhtar Faheem,Rehman Mujeeb Ur,Wasti Shahbaz Hassan

Abstract

Breast cancer is one of the worst illnesses, with a higher fatality rate among women globally. Breast cancer detection needs accurate mammography interpretation and analysis, which is challenging for radiologists owing to the intricate anatomy of the breast and low image quality. Advances in deep learning-based models have significantly improved breast lesions’ detection, localization, risk assessment, and categorization. This study proposes a novel deep learning-based convolutional neural network (ConvNet) that significantly reduces human error in diagnosing breast malignancy tissues. Our methodology is most effective in eliciting task-specific features, as feature learning is coupled with classification tasks to achieve higher performance in automatically classifying the suspicious regions in mammograms as benign and malignant. To evaluate the model’s validity, 322 raw mammogram images from Mammographic Image Analysis Society (MIAS) and 580 from Private datasets were obtained to extract in-depth features, the intensity of information, and the high likelihood of malignancy. Both datasets are magnificently improved through preprocessing, synthetic data augmentation, and transfer learning techniques to attain the distinctive combination of breast tumors. The experimental findings indicate that the proposed approach achieved remarkable training accuracy of 0.98, test accuracy of 0.97, high sensitivity of 0.99, and an AUC of 0.99 in classifying breast masses on mammograms. The developed model achieved promising performance that helps the clinician in the speedy computation of mammography, breast masses diagnosis, treatment planning, and follow-up of disease progression. Moreover, it has the immense potential over retrospective approaches in consistency feature extraction and precise lesions classification.

Funder

national key research and development program of china

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference57 articles.

1. WHO. Fact Sheet World Health Organization; 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer.

2. Cancer Statistics: Global and National

3. Performance of screening mammography among women with and without a first-degree relative with breast cancer;K Kerlikowske;Annals of internal medicine,2000

4. A deep feature based framework for breast masses classification;Z Jiao;Neurocomputing,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3