Deep learning-based approach to the characterization and quantification of histopathology in mouse models of colitis

Author:

Kobayashi SomaORCID,Shieh Jason,Ruiz de Sabando Ainara,Kim Julie,Liu Yang,Zee Sui Y.,Prasanna Prateek,Bialkowska Agnieszka B.,Saltz Joel H.,Yang Vincent W.ORCID

Abstract

Inflammatory bowel disease (IBD) is a chronic immune-mediated disease of the gastrointestinal tract. While therapies exist, response can be limited within the patient population. Researchers have thus studied mouse models of colitis to further understand pathogenesis and identify new treatment targets. Flow cytometry and RNA-sequencing can phenotype immune populations with single-cell resolution but provide no spatial context. Spatial context may be particularly important in colitis mouse models, due to the simultaneous presence of colonic regions that are involved or uninvolved with disease. These regions can be identified on hematoxylin and eosin (H&E)-stained colonic tissue slides based on the presence of abnormal or normal histology. However, detection of such regions requires expert interpretation by pathologists. This can be a tedious process that may be difficult to perform consistently across experiments. To this end, we trained a deep learning model to detect ‘Involved’ and ‘Uninvolved’ regions from H&E-stained colonic tissue slides. Our model was trained on specimens from controls and three mouse models of colitis–the dextran sodium sulfate (DSS) chemical induction model, the recently established intestinal epithelium-specific, inducible Klf5ΔIND (Villin-CreERT2;Klf5fl/fl) genetic model, and one that combines both induction methods. Image patches predicted to be ‘Involved’ and ‘Uninvolved’ were extracted across mice to cluster and identify histological classes. We quantified the proportion of ‘Uninvolved’ patches and ‘Involved’ patch classes in murine swiss-rolled colons. Furthermore, we trained linear determinant analysis classifiers on these patch proportions to predict mouse model and clinical score bins in a prospectively treated cohort of mice. Such a pipeline has the potential to reveal histological links and improve synergy between various colitis mouse model studies to identify new therapeutic targets and pathophysiological mechanisms.

Funder

NIDDK

Division of Cancer Epidemiology and Genetics, National Cancer Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. The Facts About Inflammatory Bowel Disease Crohn’s & Colitis Foundation of America2014 [Available from: https://www.crohnscolitisfoundation.org/sites/default/files/2019-02/Updated%20IBD%20Factbook.pdf.

2. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study;CN Bernstein;Gastroenterology,2005

3. Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies;PL Lakatos;World J Gastroenterol,2008

4. Pathophysiology of inflammatory bowel disease: an overview;R Thoreson;Surg Clin North Am,2007

5. The dextran sulphate sodium (DSS) model of colitis: an overview;L Solomon;Comparative clinical pathology,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3