Automation and standardization of subject-specific region-of-interest segmentation for investigation of diffusion imaging in clinical populations

Author:

Azor Adriana M.ORCID,Sharp David J.,Jolly Amy E.,Bourke Niall J.ORCID,Hellyer Peter J.

Abstract

Diffusion weighted imaging (DWI) is key in clinical neuroimaging studies. In recent years, DWI has undergone rapid evolution and increasing applications. Diffusion magnetic resonance imaging (dMRI) is widely used to analyse group-level differences in white matter (WM), but suffers from limitations that can be particularly impactful in clinical groups where 1) structural abnormalities may increase erroneous inter-subject registration and 2) subtle differences in WM microstructure between individuals can be missed. It also lacks standardization protocols for analyses at the subject level. Region of Interest (ROI) analyses in native diffusion space can help overcome these challenges, with manual segmentation still used as the gold standard. However, robust automated approaches for the analysis of ROI-extracted native diffusion characteristics are limited. Subject-Specific Diffusion Segmentation (SSDS) is an automated pipeline that uses pre-existing imaging analysis methods to carry out WM investigations in native diffusion space, while overcoming the need to interpolate diffusion images and using an intermediate T1 image to limit registration errors and guide segmentation. SSDS is validated in a cohort of healthy subjects scanned three times to derive test-retest reliability measures and compared to other methods, namely manual segmentation and tract-based spatial statistics as an example of group-level method. The performance of the pipeline is further tested in a clinical population of patients with traumatic brain injury and structural abnormalities. Mean FA values obtained from SSDS showed high test-retest and were similar to FA values estimated from the manual segmentation of the same ROIs (p-value > 0.1). The average dice similarity coefficients (DSCs) comparing results from SSDS and manual segmentations was 0.8 ± 0.1. Case studies of TBI patients showed robustness to the presence of significant structural abnormalities, indicating its potential clinical application in the identification and diagnosis of WM abnormalities. Further recommendation is given regarding the tracts used with SSDS.

Funder

Royal British Legion

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3