Abstract
The Lagrangian vortex method has the advantage of producing highly detailed simulations of fluids such as turbulent smoke. However, this method has two problems: the construction of the velocity field from the vorticity field is inefficient, and handling the boundary condition is difficult. We present a pure Lagrangian vortex method, including a nested grid to accelerate the construction of the velocity field, and a novel boundary treatment method for the vorticity field. Based on a tree structure, the nested grid algorithm considerably improves the efficiency of the velocity computation while producing visual results that are comparable with the original flow. Based on the vortex-generating method, the least square method is used to compute the vorticity strength of the new vortex elements. Further, we consider the mutual influence between the generated vortex particles. We demonstrate our method’s benefits by using a vortex ring and various examples of interaction between the smoke and obstacles.
Funder
National Natural Science Foundation of China
Liaoning Province Natural Science Foundation Shipping Joint Fund Project
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献