Ant identity determines the fungi richness and composition of a myrmecochorous seed

Author:

Fernandes Tiago V.ORCID,Fernandes Otavio L.,Gomes Inácio J. M. T.,Solar Ricardo R. C.ORCID,Campos Ricardo I.

Abstract

Myrmecochory—seed dispersal by ants—is a mutualistic interaction in which ants attracted by seed appendices take them away from the parental plant location, where seeds usually have better development odds. Not all ant species benefit plants, and the mechanisms of those divergent outcomes are still unclear, especially from the perspective of microbial third parties. Here, we explore the effects of seed manipulation on fungi communities promoted by two ant species with contrasting effects on seed germination and antimicrobial cleaning strategies. We hypothesize that: i) fungi richness is higher in seeds manipulated by Acromyrmex subterraneus (species that negatively affect seed germination), followed by unmanipulated seeds and seeds manipulated by Atta sexdens (ant species that increase seed germination) and ii) seeds manipulated by A. sexdens, Ac. subterraneus and unmanipulated seeds present dissimilar fungi compositions. We identified fungal morphotypes in three groups of seeds: i) manipulated by A. sexdens; ii) manipulated by Ac. subterraneus; iii) unmanipulated. Seeds manipulated by Ac. subterraneus exhibited higher fungal richness than those manipulated by A. sexdens and unmanipulated seeds, indicating that the ant species known to impair germination increases the fungal load on seeds. Additionally, we found that A. sexdens ants were unable to reduce fungal richness compared to unmanipulated seeds. Furthermore, fungal composition differed among all three treatments. Our results underscore the significance of ant species identity in shaping the fungal communities associated with myrmecochorous seeds. Given the potential influence of microbial infection on seed fate, we suggest considering manipulation strategies when evaluating the overall quality of an ant as a seed disperser.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Agência Nacional de Energia Elétrica

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3