Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm

Author:

Ho Lanh Si,Tran Van QuanORCID

Abstract

The compressive strength (CS) of the hollow concrete masonry prism is known as an important parameter for designing masonry structures. In general, the CS is determined using laboratory tests, however, laboratory tests are time-consuming and high-cost. Thus, it is necessary to evaluate and estimate the CS using different methods, for example, machine learning techniques. This study employed Gradient Boosting (GB) to evaluate and predict the CS of hollow masonry prism. The database consists of 102 hollow concrete specimens taken from different previous published literature used for modeling. The output is the CS of the hollow masonry prism, while the inputs include the compressive strength of mortar (fm), the compressive strength of blocks (fb), height-to-thickness ratio (h/t), the ratio of fm/fb. To reduce the overfitting problem, this study used K-Fold cross-validation, then particle swarm optimization (PSO) was employed to obtain the optimum hyperparameter. The GB model then was modeled using the optimum hyperparameters. The results showed that the GB model performed very well in evaluating and predicting the CS of the hollow masonry prims with a high prediction accuracy, the values of R2, RMSE, MAE, and MAPE are 0.977, 0.803 MPa, 0.612 MPa, and 0.036%, respectively. The performance of the GB model in this study outperformed in comparison to six different machine learning models (decision tree, linear regression, random forest regression, ridge regression, Artificial Neural network, and Extreme Gradient Boosting) used in previous studies. The results of sensitivity analysis using SHAP and PDP-2D indicate that the CS is strongly dependent on the fb (with a mean SHAP value of 3.2), h/t (with a mean SHAP value of 1.63), while the fm/fb (with a mean SHAP value of 0.57) had a small effect on the CS. Thus, it can be stated that this research provides a good method to evaluate and predict the CS of the hollow masonry prism, which can bring good knowledge for practical application in this field.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3