Data mining and spatio-temporal characteristics of urban road traffic emissions: A case study in Shijiazhuang, China

Author:

Ren LiliORCID,Guo Xuliang,Wu JianglingORCID,Singh Amit Kumar

Abstract

Accurate estimation of traffic emissions and analysis of spatio-temporal distribution on urban roads play a crucial role in the development of low-carbon transportation system. Traditionally, a region’s emission characteristics have been studied using numerous emission models with GPS-based spatio-temporal data. Due to the heavy data processing needs of GPS-based data, emission characteristics for a large region have been studied by dividing the region into a limited number of smaller areas or units. Additionally, GPS data are based on a few vehicles in the traffic which does not fully reflect road conditions. This paper proposed an approach that can be used to study and calculate the spatio-temporal emission pattern of a region at a roadway section level by using Baidu’s online traffic data and COPERT model. The proposed method can be used to estimate road-level emission patterns while avoiding the impact of redundant data in large datasets, making the dataset more reliable, applicable, and scalable. The proposed approach has been demonstrated through a study of spatio-temporal emission patterns in the Qiaoxi district within city of Shijiazhuang, China. Online data crawling technology was used to obtain data on urban road traffic speed and driving distance. The linear reference technology was used to construct a two-layer road network model to conduct the coupling and matching of traffic data with the road network data. The COPERT model was implemented to calculate the average traffic emissions on each road in the road network, and a traffic emission intensity index was proposed to quantify the CO, VOC, NOx and CO2 emissions on urban roads in the study area. The analysis results show that the traffic emission intensity of the expressway, trunk road, secondary road, and branch road is high during the morning peak (7 AM-9 AM) and evening peak (5 PM—7 PM). The sections with higher traffic emission intensity are mainly concentrated on the main roads and secondary roads such as Jiefang South Street, Shitong Road and Xinhua Road. Nearly one-third of 2nd Ring and 3rd Ring roads also have relatively high emission intensity. The research results provide new ideas for estimating traffic emissions in urban road networks and analyzing the spatio-temporal distribution of traffic emissions. The research results can also provide a decision-making basis for traffic management departments to formulate energy-saving and emission-reduction measures and promote the development of urban green and low-carbon transportation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3