Allochthonous marsh subsidies enhances food web productivity in an estuary and its surrounding ecosystem mosaic

Author:

Davis Melanie J.ORCID,Woo IsaORCID,De La Cruz Susan E. W.,Ellings Christopher S.,Hodgson Sayre,Nakai Glynnis

Abstract

Terrestrial organic matter is believed to play an important role in promoting resilient estuarine food webs, but the inherent interconnectivity of estuarine systems often obscures the origins and importance of these terrestrial inputs. To determine the relative contributions of terrestrial (allochthonous) and aquatic (autochthonous) organic matter to the estuarine food web, we analyzed carbon, nitrogen, and sulfur stable isotopes from multiple trophic levels, environmental strata, and habitats throughout the estuarine habitat mosaic. We used a Bayesian stable isotope mixing model (SIMM) to parse out relationships among primary producers, invertebrates, and a pelagic and demersal fish species (juvenile Chinook salmon and sculpin, respectively). The study was carried out in the Nisqually River Delta (NRD), Washington, USA, a recently-restored, macrotidal estuary with a diverse habitat mosaic. Plant groupings of macroalgae, eelgrass, and tidal marsh plants served as the primary base components of the NRD food web. About 90% of demersal sculpin diets were comprised of benthic and pelagic crustaceans that were fed by autochthonous organic matter contributions from aquatic vegetation. Juvenile salmon, on the other hand, derived their energy from a mix of terrestrial, pelagic, and benthic prey, including insects, dipterans, and crustaceans. Consequently, allochthonous terrestrial contributions of organic matter were much greater for salmon, ranging between 26 and 43%. These findings demonstrate how connectivity among estuarine habitat types and environmental strata facilitates organic matter subsidies. This suggests that management actions that improve or restore lateral habitat connectivity as well as terrestrial-aquatic linkages may enhance allochthonous subsidies, promoting increased prey resources and ecosystem benefits in estuaries.

Funder

U.S. Geological Survey

Estuary and Salmon Restoration Program

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3