Predicting the immunity landscape and prognosis with an NCLs signature in liver hepatocellular carcinoma

Author:

Ji Zhangxin,Zhang Chenxu,Yuan Jingjing,He Qing,Zhang Xinyu,Yang Dongmei,Xu Na,Chu JunORCID

Abstract

Background Activated neutrophils release depolymerized chromatin and protein particles into the extracellular space, forming reticular Neutrophil Extracellular Traps (NETs). This process is accompanied by programmed inflammatory cell death of neutrophils, known as NETosis. Previous reports have demonstrated that NETosis plays a significant role in immune resistance and microenvironmental regulation in cancer. This study sought to characterize the function and molecular mechanism of NETosis-correlated long non-coding RNAs (NCLs) in the prognostic treatment of liver hepatocellular carcinoma (LIHC). Methods We obtained the transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and evaluated the expression of NCLs in LIHC. A prognostic signature of NCLs was constructed using Cox and Last Absolute Shrinkage and Selection Operator (Lasso) regression, while the accuracy of model was validated by the ROC curves and nomogram, etc. In addition, we analyzed the associations between NCLs and oncogenic mutation, immune infiltration and evasion. Finally, LIHC patients were classified into four subgroups based on consensus cluster analysis, and drug sensitivity was predicted. Results After screening, we established a risk model combining 5 hub-NCLs and demonstrated its reliability. Independence checks suggest that the model may serve as an independent predictor of LIHC prognosis. Enrichment analysis revealed a concentration of immune-related pathways in the high-risk group. Immune infiltration indicates that immunotherapy could be more effective in the low-risk group. Upon consistent cluster analysis, cluster subgroup 4 presented a better prognosis. Sensitivity tests showed the distinctions in therapeutic effectiveness among various drugs in different subgroups. Conclusion Overall, we have developed a prognostic signature that can discriminate different LIHC subgroups through the 5 selected NCLs, with the objective of providing LIHC patients a more precise, personalized treatment regimen.

Funder

Anhui Provincial Department of Education

University Natural Science Research Project of Anhui Province

State Key Laboratory of Tea Plant Biology and Utilization

Publisher

Public Library of Science (PLoS)

Reference38 articles.

1. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention;DQ Huang;Nat Rev Gastroenterol Hepatol,2021

2. Hepatocellular carcinoma;JM Llovet;Nat Rev Dis Primers,2021

3. A global view of hepatocellular carcinoma: trends, risk, prevention and management;JD Yang;Nat Rev Gastroenterol Hepatol,2019

4. Advances in Immunotherapy for Hepatocellular Carcinoma;S Hagiwara;Cancers (Basel),2023

5. Cellular Mechanisms of NETosis;HR Thiam;Annu Rev Cell Dev Biol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3