KNCFS: Feature selection for high-dimensional datasets based on improved random multi-subspace learning

Author:

Guo CongORCID

Abstract

Feature selection has long been a focal point of research in various fields.Recent studies have focused on the application of random multi-subspaces methods to extract more information from raw samples.However,this approach inadequately addresses the adverse effects that may arise due to feature collinearity in high-dimensional datasets.To further address the limited ability of traditional algorithms to extract useful information from raw samples while considering the challenge of feature collinearity during the random subspaces learning process, we employ a clustering approach based on correlation measures to group features.Subsequently, we construct subspaces with lower inter-feature correlations.When integrating feature weights obtained from all feature spaces,we introduce a weighting factor to better handle the contributions from different feature spaces.We comprehensively evaluate our proposed algorithm on ten real datasets and four synthetic datasets,comparing it with six other feature selection algorithms.Experimental results demonstrate that our algorithm,denoted as KNCFS,effectively identifies relevant features,exhibiting robust feature selection performance,particularly suited for addressing feature selection challenges in practice.

Publisher

Public Library of Science (PLoS)

Reference37 articles.

1. On feature learning in the presence of spurious correlations;P. Izmailov;Advances in Neural Information Processing Systems,2022

2. Learning fair representations via rebalancing graph structure;G. Zhang;Information Processing & Management,2024

3. Relief-based feature selection: Introduction and review;R.J. Urbanowicz;Journal of biomedical informatics,2018

4. Distributed multi-label feature selection using individual mutual information measures;J. Gonzalez-Lopez;Knowledge-Based Systems,2020

5. Accelerating wrapper-based feature selection with K-nearest-neighbor;A. Wang;Knowledge-Based Systems,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3