Modelling microplastic bioaccumulation and biomagnification potential in the Galápagos penguin ecosystem using Ecopath and Ecosim (EwE) with Ecotracer

Author:

McMullen KarlyORCID,Vargas Félix Hernán,Calle Paola,Alavarado-Cadena Omar,Pakhomov Evgeny A.,Alava Juan José

Abstract

Bioaccumulation and biomagnification of anthropogenic particles are crucial factors in assessing microplastic impacts to marine ecosystems. Microplastic pollution poses a significant threat to iconic and often endangered species but examining their tissues and gut contents for contaminant analysis via lethal sampling is challenging due to ethical concerns and animal care restrictions. Incorporating empirical data from prey items and fecal matter into models can help trace microplastic movement through food webs. In this study, the Galápagos penguin food web served as an indicator species to assess microplastic bioaccumulation and biomagnification potential using trophodynamic Ecopath with Ecosim (EwE) modelling with Ecotracer. Empirical data collected from surface seawater near Galápagos penguin colonies, zooplankton, penguin prey, and penguin scat in October 2021 were used to inform the ecosystem model. Multiple scenarios, including a 99% elimination rate, were employed to assess model sensitivity. Model predictions revealed that microplastics can bioaccumulate in all predator-prey relationships, but biomagnification is highly dependent on the elimination rate. It establishes the need for more research into elimination rates of different plastics, which is a critical missing gap in current microplastic ecotoxicological and bioaccumulation science. Compared to empirical data, modelling efforts underpredicted microplastic concentrations in zooplankton and over-predicted concentrations in fish. Ultimately, the ecosystem modelling provides novel insights into potential microplastics’ bioaccumulation and biomagnification risks. These findings can support regional marine plastic pollution management efforts to conserve native and endemic species of the Galápagos Islands and the Galápagos Marine Reserve.

Funder

Ocean Nexus Center, EarthLab, University of Washington

Natural Sciences and Engineering Research Council of Canada

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3