Automated, real-time material detection during ultrashort pulsed laser machining using laser-induced breakdown spectroscopy, for process tuning, end-pointing, and segmentation

Author:

Choi HongbinORCID,Phoulady Adrian,Hoveida Pouria,May Nicholas,Shahbazmohamadi Sina,Tavousi PouyaORCID

Abstract

The rapid, high-resolution material processing offered by ultrashort pulsed lasers enables a wide range of micro and nanomachining applications in a variety of disciplines. Complex laser processing jobs conducted on composite samples, require an awareness of the material type that is interacting with laser both for adjustment of the lasering process and for endpointing. This calls for real-time detection of the materials. Several methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-Ray spectroscopy (EDS) can be used for material characterization. However, these methods often need interruption of the machining process to transfer the sample to another instrument for inspection. Such interruption significantly increases the required time and effort for the machining task, acting as a prohibitive factor for many laser machining applications. Laser induced breakdown spectroscopy (LIBS) is a powerful technique that can be used for material characterization, by analyzing a signal that is generated upon the interaction of laser with matter, and thus, it can be considered as a strong candidate for developing an in-situ characterization method. In this work, we propose a method that uses LIBS in a feedback loop system for real time detection and decision making for adjustment of the lasering process on-the-fly. Further, use of LIBS for automated material segmentation, in the 3D image resulting from consecutive lasering and imaging steps, is showcased.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3