A novel genetic model provides a unique perspective on the relationship between postexercise glycogen concentration and increases in the abundance of key metabolic proteins after acute exercise

Author:

Kwak Seong EunORCID,Zheng Amy,Arias Edward B.,Wang Haiyan,Pan XiufangORCID,Yue Yongping,Duan Dongsheng,Cartee Gregory D.ORCID

Abstract

Some acute exercise effects are influenced by postexercise (PEX) diet, and these diet-effects are attributed to differential glycogen resynthesis. However, this idea is challenging to test rigorously. Therefore, we devised a novel genetic model to modify muscle glycogen synthase 1 (GS1) expression in rat skeletal muscle with an adeno-associated virus (AAV) short hairpin RNA knockdown vector targeting GS1 (shRNA-GS1). Contralateral muscles were injected with scrambled shRNA (shRNA-Scr). Muscles from exercised (2-hour-swim) and time-matched sedentary (Sed) rats were collected immediately postexercise (IPEX), 5-hours-PEX (5hPEX), or 9-hours-PEX (9hPEX). Rats in 5hPEX and 9hPEX experiments were refed (RF) or not-refed (NRF) chow. Muscles were analyzed for glycogen, abundance of metabolic proteins (pyruvate dehydrogenase kinase 4, PDK4; peroxisome proliferator-activated receptor γ coactivator-1α, PGC1α; hexokinase II, HKII; glucose transporter 4, GLUT4), AMP-activated protein kinase phosphorylation (pAMPK), and glycogen metabolism-related enzymes (glycogen phosphorylase, PYGM; glycogen debranching enzyme, AGL; glycogen branching enzyme, GBE1). shRNA-GS1 versus paired shRNA-Scr muscles had markedly lower GS1 abundance. IPEX versus Sed rats had lower glycogen and greater pAMPK, and neither of these IPEX-values differed for shRNA-GS1 versus paired shRNA-Scr muscles. IPEX versus Sed groups did not differ for abundance of metabolic proteins, regardless of GS1 knockdown. Glycogen in RF-rats was lower for shRNA-GS1 versus paired shRNA-Scr muscles at both 5hPEX and 9hPEX. HKII protein abundance was greater for 5hPEX versus Sed groups, regardless of GS1 knockdown or diet, and despite differing glycogen levels. At 9hPEX, shRNA-GS1 versus paired shRNA-Scr muscles had greater PDK4 and PGC1α abundance within each diet group. However, the magnitude of PDK4 or PGC1α changes was similar in each diet group regardless of GS1 knockdown although glycogen differed between paired muscles only in RF-rats. In summary, we established a novel genetic approach to investigate the relationship between muscle glycogen and other exercise effects. Our results suggest that exercise-effects on abundance of several metabolic proteins did not uniformly correspond to differences in postexercise glycogen.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3