The effect of common paralytic agents used for fluorescence imaging on redox tone and ATP levels in Caenorhabditis elegans

Author:

Morton Katherine S.ORCID,Wahl Ashlyn K.,Meyer Joel N.

Abstract

One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Reference43 articles.

1. The genetics of Caenorhabditis elegans;S. Brenner;Genetics,1974

2. Light-microscopy methods in C. elegans research;L Breimann;Current Opinion in Systems Biology,2019

3. Generation of Reactive Oxygen Species by Mitochondria;P Hernansanz-Agustín;Antioxidants,2021

4. Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging;CF Labuschagne;Ageing Research Reviews,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3