Machine learning to predict risk for community-onset Staphylococcus aureus infections in children living in southeastern United States

Author:

Lin XitingORCID,Geng Ruijin,Menke Kurt,Edelson Mike,Yan Fengxia,Leong Traci,Rust George S.,Waller Lance A.,Johnson Erica L.,Cheng Immergluck LillyORCID

Abstract

Staphylococcus aureus (S. aureus) is known to cause human infections and since the late 1990s, community-onset antibiotic resistant infections (methicillin resistant S. aureus (MRSA)) continue to cause significant infections in the United States. Skin and soft tissue infections (SSTIs) still account for the majority of these in the outpatient setting. Machine learning can predict the location-based risks for community-level S. aureus infections. Multi-year (2002–2016) electronic health records of children <19 years old with S. aureus infections were queried for patient level data for demographic, clinical, and laboratory information. Area level data (Block group) was abstracted from U.S. Census data. A machine learning ecological niche model, maximum entropy (MaxEnt), was applied to assess model performance of specific place-based factors (determined a priori) associated with S. aureus infections; analyses were structured to compare methicillin resistant (MRSA) against methicillin sensitive S. aureus (MSSA) infections. Differences in rates of MRSA and MSSA infections were determined by comparing those which occurred in the early phase (2002–2005) and those in the later phase (2006–2016). Multi-level modeling was applied to identify risks factors for S. aureus infections. Among 16,124 unique patients with community-onset MRSA and MSSA, majority occurred in the most densely populated neighborhoods of Atlanta’s metropolitan area. MaxEnt model performance showed the training AUC ranged from 0.771 to 0.824, while the testing AUC ranged from 0.769 to 0.839. Population density was the area variable which contributed the most in predicting S. aureus disease (stratified by CO-MRSA and CO-MSSA) across early and late periods. Race contributed more to CO-MRSA prediction models during the early and late periods than for CO-MSSA. Machine learning accurately predicts which densely populated areas are at highest and lowest risk for community-onset S. aureus infections over a 14-year time span.

Funder

U.S. National Library of Medicine

Agency for Healthcare Research and Quality

National Center for Advancing Translational Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3