Simulating emergence of novelties using agent-based models

Author:

Suda MikihiroORCID,Saito Takumi,Iwahashi Nanami,Regan CiaranORCID,Oka MizukiORCID

Abstract

Understanding the growth and evolution of social networks is an important area of study, as these networks form the foundation for many popular online services such as social networking sites (SNS) and online games. However, previous models developed to explain the growth mechanisms of these networks have struggled to accurately reproduce certain behaviors that are frequently observed in real data, such as waves of novelty, in which new individuals or topics receive more attention than existing ones for a short period of time. In this study, we introduce a new model that incorporates context information into existing agent-based models in order to more accurately capture the structure and growth dynamics of these networks. Context information is introduced through labels based on the timing of appearance and relationships with antecedent agents. New agents are first added to the network when they are called by existing agents, and at this time they are also given a label. Agents added to the network at the same time by the same agent will have the same label. These labels are used to classify agents and give them different selection probabilities. This newly introduced selection probability creates a mechanism in which new agents receive attention beyond preferential attachment. By comparing the results of our model with real data on ten metrics, we demonstrate that it is able to produce behavior that more closely resembles real data. This improved understanding of the dynamics of social networks has important implications for designing effective interventions, including strategies for user acquisition and retention.

Funder

JSPS KAKENHI

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Sur quelques points de la théorie des probabilités;G Pólya;Annales de l’institut Henri Poincaré,1930

2. Semiotic dynamics and collaborative tagging;C Cattuto;Proceedings of the National Academy of Sciences,2007

3. Usage patterns of collaborative tagging systems;SA Golder;Journal of Information Science,2006

4. The dynamics of correlated novelties;F Tria;Scientific Reports,2014

5. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F. R. S;GU Yule;Philosophical Transactions of the Royal Society of London Series B, Containing Papers of a Biological Character,1925

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3