Investigation of sex expression profiles and the cantharidin biosynthesis genes in two blister beetles

Author:

Wu Yuan-MingORCID,Li Jia-Ran,Li Jiang,Guo Tao

Abstract

Cantharidin (CTD) is a well-established defensive toxin synthesized by blister beetles, displaying both therapeutic potential and toxicity. Among these beetles, Hycleus cichorii and Hycleus phaleratus are the two most commercially significant species due to their capacity to produce CTD in males. In this investigation, we conducted a gene expression profiling analysis of male and female individuals of these two species, utilizing the Illumina Hiseq4000 platform. We identified 7,983 expressed genes, including 2,823 differentially expressed genes (DEGs) shared by both male and female blister beetles. Nineteen genes related to CTD biosynthesis in the terpenoid backbone biosynthesis pathway were identified, including hydroxymethylglutaryl-CoA reductase (HMGR; EC:1.1.1.34), which demonstrated a significant correlation with CTD content. Furthermore, hydroxymethylglutaryl-CoA synthase (HMGS; EC:2.3.3.10) and isopentenyl-diphosphate Delta-isomerase (IDI; EC:5.3.3.2) were also found to be significantly up-regulated in males. Comparative analysis revealed that NADP+-dependent farnesol dehydrogenase (FOHSDR; EC:1.1.1.216) and farnesyl diphosphate synthase (FDPS; EC:2.5.1.1) had the highest copy number in these beetles, significantly higher than the copy number of the other four non-Meloidae insects. The analysis of the protein-protein interaction network of genes related to CTD biosynthesis revealed that the acetyl-CoA C-acetyltransferase (ACAT; EC:2.3.1.9) gene was the central gene, exhibiting greater expression in male blister beetles than in females. This study offers novel insights into the mechanisms of CTD biosynthesis in blister beetles and enhances our comprehensions of the association between particular genes and CTD content.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guizhou Province

Health Commission of Guizhou Province

Guizhou provincial people’s hospital doctor fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3