TPP1 is associated with risk of advanced precursors and cervical cancer survival

Author:

Wang Qiao-LiORCID,Gong Caifeng,Meng Xiang-Yu,Fu Min,Yang Hui,Zhou Fuxiang,Wu QiujiORCID,Zhou Yunfeng

Abstract

It is unclear how telomere-binding protein TPP1 interacts with human telomerase reverse transcriptase (hTERT) and influences cervical cancer development and progression. This study included all eligible 156 cervical cancers diagnosed during 2003–2008 and followed up through 2014, 102 cervical intraepithelial neoplasia (CIN) patients, and 16 participants with normal cervix identified at the same period. Correlation of expression of TPP1 and hTERT in these lesions was assessed using Kappa statistics. TPP1 was knocked down by siRNA in three cervical cancer cell lines. We assessed mRNA expression using quantitative real-time polymerase chain reaction and protein expression using tissue microarray-based immunohistochemical staining. We further analyzed the impact of TPP1 expression on the overall survival of cervical cancer patients by calculating the hazard ratio (HR) with 95% confidence intervals (CIs) using the multivariable-adjusted Cox regression model. Compared to the normal cervix, high TPP1expression was significantly associated with CIN 3 and cervical cancers (P<0.001 for both). Expressions of TPP1 and hTERT were highly correlated in CIN 3 (Kappa statistics = 0.50, P = 0.005), squamous cell carcinoma (Kappa statistics = 0.22, P = 0.011), and adenocarcinoma/adenosquamous carcinoma (Kappa statistics = 0.77, P = 0.001). Mechanistically, knockdown of TPP1 inhibited the expression of hTERT in both mRNA and protein levels. High expression of TPP1 (HR = 2.61, 95% CI 1.23–5.51) and co-high expression of TPP1 and hTERT (HR = 2.38, 95% CI 1.28–4.43) were independently associated with worse survival in cervical cancer patients. TPP1 and hTERT expression was correlated and high expression of TPP1 was associated with high risk of CIN 3 and cervical cancer and could predict a worse survival in cervical cancer.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3